Codied To Clipboard !
Home > Notes > Python Pandas
using astype we can convert one type to another.
Data = {'Name': ['GeeksForGeeks','Python'], 'Unique ID': ['900','450'], 'distance': ['40.2','30.5']} df = pd.DataFrame(Data) df['Unique ID'] = df['Unique ID'].astype(int) df['distance'] = df['distance'].astype(float) df.dtypes #df
using where , we can Filter the data.
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')}) df['color'] = np.where(df['Set']=='Z', 'green', 'red') print(df)
using replace, we can replace from source value to destination.
dk=pd.DataFrame({"BrandName":['A','B','ABC','D','AB'],"Specialty":[ print(dk) print(dk.BrandName.replace(to_replace=['ABC','AB'],value=['A','B'])
using drop_duplicates , we are dropping the data.
import pandas as pd emp = {"Name": ["Parker", "Smith", "William", "Parker"], "Age": [21, 32, 29, 21]} #info = pd.DataFrame(emp) info = info.drop_duplicates() #print(info) info
it will sort using index.
#now let us create our own datasets and perform the operations students = [ ('Jack', 34, 'Sydney') , ('Riti', 31, 'Delhi' ) , ('Aadi', 16, 'New York') , ('Riti', 32, 'Delhi' ) , ('Riti', 33, 'Delhi' ) , ('Riti', 35, 'Mumbai' ), ('Ajay', 21, 'Hyderabad') ] #let us perform the sort by index df3.sort_index() # sorted by index only df3.sort_index(axis=0, ascending=False) #axis = 0 is by row
return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
#df3['Name'].value_counts() df3['Name'].value_counts()